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Velocity field distributions due to ideal line vortices
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We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid
model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid
circular boundary. We focus on “nearest-neighbor” contributions that result from vortices thagfadomly
very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a
non-Gaussian high-velocity “tail” on an otherwise Gaussian distribution function for the Eulerian velocity
field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability
distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find substantial differences between
these and the uniform case.
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[. INTRODUCTION many nonstandard properties, including the divergence of
some of its low-order moments, a consequence of the long
Study of the hydrodynamics of ideal line vortices goesrange of the inverse-square force field and the fact that point
back at least as far as Helmholtz in the 19th century, and wasassegor chargeseach have an infinite “self-energy” that
developed in the 20th by Lifil] and Onsagel2], who first  reflects itself in the total force field when the single-particle
made the dynamical system an object of statistical-contributions are combined additively.
mechanical inquiry. The system appeared in plasma physics In a recent interesting pap¢¥], Kuvshinov and Schep
when Taylor and McNamari8,4] calculated the Bohm-like considered the statistics of the velocity field of a large but
coefficients of self-diffusion for a strongly magnetized, two- finite number of ideal line vortices inside a circular boundary
dimensional, electrostatic guiding-center plasma model, &see also the paper of Chukd&], which is of some impor-
system whose mathematical description becomes identic&nce. They assumed uniformly distributed and uncorrelated
with that of the ideal line vortex system under appropriateline vortices of a single sign of vorticity. They noted that the
substitutions; the fact that these diffusion coefficients wereHoltsmark-style treatment carried out by Chandrasekhar for
inversely proportional to the first power of the magneticthe three-dimensional case contained a divergent integral in
field, even in thermal equilibrium, was startling. two dimensions, and so was not immediately applicable.
The system is one for which interesting statistical-They then performed repeated numerical measurements of
mechanical and fluid-mechanical questions can be asked, btite two-dimensional velocity field, near the center of the
must be asked with care, for two reasons. First, viscous efeircular boundary, that resulted from uncorrelated random
fects have never been fully included in the model, althoughdistributions of a large numbers of vortices, thrown at each
some forms of Navier-Stokes behavior have, on occasiortrial into the circular boundary without correlation and with-
been observed for it. Second, no classical, extensive “thereut any mean density variation.
modynamic limit” exists for the system in the conventional = The most interesting result of Kuvshinov and Schep was
sense, and the partition function, even for the case in whiclan “experimentally” determined probability distribution for
there is no overall net vorticity, does not in general exist inthe velocity, which seemed to split naturally into two parts: a
the infinite volume limif5]. None of the standard machinery Gaussian distribution for the lower velocities and high-
of equilibrium statistical mechanics can be trusted com-energy “tails” for the larger velocities that fell off approxi-
pletely without re-examination. mately as the third power of the fluctuating velociilere,
One question that can be asked, motivated in part by vari“fluctuating” velocities are interpreted to mean those with
ous probability distribution function measurements for turbu-the mean-field rigid rotation associated with the uniform vor-
lent fluid velocities that have been made in recent yearsticity density distribution subtracted ouThey hypothesized
concerns the distribution of the velocity field at a fixed pointthat the approximate inverse third-power dependence of the
in space, one at which no vortex necessarily resides. Theil was a consequence of occasional “near-neighbor” con-
field in question is one that is produced by all the vorticestributions, in which one vortex found itself very close to the
This is a close analogue of the question of the probabilitypoint where the velocity field was being sampled, and gen-
distribution of the vector gravitational field due to a large eralized a three-dimensional “nearest-neighbor” algebraic
collection of point masses, a question addressed in detail bgrgument of Chandrasekhar6] to account for this high-
Chandrasekhar in 194®%]. Under the assumption that the velocity power law contribution. In a rather different con-
point masses in three dimensions are uniformly distributedinuum model, something not totally dissimilar had previ-
and uncorrelated, the resulting Holtsmark distribution hasusly been reported by Jimeng.

1063-651X/2001/6%)/0563118)/$20.00 63056311-1 ©2001 The American Physical Society



THOMAS S. LEVI AND DAVID C. MONTGOMERY PHYSICAL REVIEW E63 056311

We have in this paper repeated certain features of Kuvshi- Il. GENERAL PROCEDURE

nov and Schep’s numerical experiment, and have attempted In a point vortex model, where each vortex has strength

to modify anq amplify it in a variety of wayg1) We have «;, the flow is two-dimensional in thex(y) plane, has only
inserted an ideal, perfectly reflecting wall boundary at theX andy components, and is given by

radius of the confining circle by changing the Green’s func-

tion to one that, by the method of images, guarantees the

vanishing of all radial velocities at the bounddf0], rather V(=2 K VX[G(r,r)el. (2.7
than using the inverse logarithmic Green’s function appro- :

priate to the unbounded regio(2) We have, upon finding Heree, is the unit vector pointing perpendicular to the plane
the non-Gaussian high-velocity tails in the probability distri- of the spatial variation of the fluids is the Green’s function
bution function, implemented a program that searches nuthat relates the vorticity to the stream function, and the sum
merically for near-neighbor contributions to the locally mea-is over all (two-dimensional vortex positionsr;. Thus, we
sured velocity field, and when it finds one, deletes itssee that the velocity at a given point is due to all the vortices
contribution to the local velocity field. We find that as a not at that point. For a two-dimensional fluid, in a rigid,
consequence, the high-velocity tails disappear, thus reinforeircular container of radiuR, the boundary condition is that
ing the conjecture of Ref7]. (3) We study the velocity field the normal component of goes to zero at the wall. The
away from the origin, to determine how the velocity field appropriate Green’s function to choose 19

sampled at the center is representative of the entire spatial

volume.(4) Finally, we allow the mean vorticity density with Glrir)= iln(|r—r’|)— iln(
which the vortex particles are distributed to vary, and rather ' 2@ 2
than placing them randomly with a spatially uniform mean- (2.2
field distribution, we weight their locations with a probability ) .

distribution function that depends exponentially upon aWhere we have replacegl with r'. Using Eq.(2.1) we get

mean-field stream function and has a temperature that can be oy

positive or negativgé10,11]. The equilibrium statistical me- ; :L< R’ sin6y,

chanics of the ideal line vortex system has undergone con- " 27\ 12’24 RA—2R?rr ' cosb;,

siderable development since it was introdu¢ed.,[10-13,

and references thergiand we take advantage of results but B r'sinfy, (233
will not go into full detail describing them here. We note r24+r1'2-2rr’ coséy,) '
only that the pairwise, additive Coulomb potentials, summed

over all the pgirs in the system_, are an ideal invariant dy- P rr'2—R2r’ cosfy,

namically, which can take on virtually any value and that Vo=5 | T o e >

determines the single-time thermal-equilibrium probability T\ '+ RT-2R%rr’ cosby,
distributions of all particles. Only one value of this energy is ,

represented by the uniform distribution. We find significant + r—r cosf ) (2.3b
differences in the velocity field statistics that result from total r2+r'2-2rr' cosy,/

mean energies that are significantly higher or lower than
those associated with the uniforfrigidly rotatingg mean-  wherev, andv 4, represent the and ¢ components of veloc-
field distribution. ity due to one point vortex of strength and 4, is the angle

In Sec. Il, we describe the computational procedure andetween the radii to the point where the velocity is measured
the results for the uniform mean-field vorticity density dis- and the position of the vortex. For each component the terms
tribution for points near the center of the circle, with anwith R represent the terms that are a result of the finite
emphasis on non-Gaussian, high-velocity “tails” that appeartoundary.
in the probability distribution function for the velocity. In All quantities will be expressed throughout in terms of
Sec. Ill, we introduce a cutoff below which “near-neighbor” dimensionless variables appropriate to the model. Since the
contributions to the velocity field are locally removed, andEuler dynamics contain no viscosity, all quantities in the
derive an analytic expression for the contribution of verydynamics before nondimensionalization contain only combi-
near neighbors to the local velocity field distribution. Sectionnations of lengths and times, or equivalently, velocities and
IV discusses the statistics of the velocity field for the uni-times, so units are not of great significance. For a convenient
form density distribution away from the center of the con-basic unit of length, we may take the mean nearest-neighbor
tainer and near the boundary. Section V is devoted to theeparation in a uniform vorticity benchmark case divided by
case in which the mean number density of vortices is notr*’? and for the basic unit of velocity, the speed with which
uniform, but rather follows from a self-consistent, mean-fieldan isolated vortex of strengthz2 will rotate the fluid in
theory that permits the study of high- and low-energy stateswhich it is imbedded at unit length distance from the vortex.
relative to the uniform density state. Section VI presents the The general procedure we use is to place a large number
results for the nonuniform mean-field distributions. SectionN of vortices of strengthk=27 into a circular region of
VII summarizes the results and indicates possible future diradius R using a random number generator and study the
rections for further investigations. statistics of the resulting velocity field. Specifically, we ex-
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amine the probability distribution for the scalar fluctuating sion for nearest-neighbor events. [Egf(r')dr’ represent the
velocity |w|=w, wherew=v—V, andV is the mean-field probability that the nearest neighbor lies betweérandr’
velocity. Letf(w)dw be the probability that the velocity isin +dr’. This probability must be equal to the probability that
the area elemenin velocity spacgdw centered aiv. We  no neighbors are interior to’ times the probability that a
are here assuming that the distribution is isotropic in velocityparticles does exist in the circular shell betweénandr’
space, which is confirmed by our numerics everywhere ex+dr’. ThusF,(r’) must satisfy[6]
cept in a very thin layer near the radial boundary. We wish to
switch to a one-dimensional integral, which is done by let- F (r’)=(1— J‘r'F (r)dr
ting F(w)dw=27wf(w)dw. The resulting distribution n o "
F(w) is normalized such thaf;F(w)dw=1. Our graphs
contain a numerically obtaindel(w). The procedure for ob- wherer’ is the distance to the nearest neighbor. Differenti-
taining thisF is to first run a series of trials, each trial rep- ating both sides, we get a differential equation fqr
resenting a set of random choices for the vortex positions
inside the circle. For the uniform vorticity density case, we d Fa(r’) , o Far)
have run 3000 trials. Then, we record a velocity value at dr m =—2mr'n(r )m-
each point sampled in the circle. Here we have sampled at 50
points separated by uniform intervals frame-0 to r =399,
whereR=400 andN=1.6x 10°. We then bin the velocities
using a histogram with uniform spacing between bins. This r
procedure gives us an unnormalized probability distribution Fa(r’)=2ar'n(r")C exp( —ZWJ n(rr df>. 3.3
for f. To get from this step to the actuBl plotted requires 0
two steps:(1) We first multiply each bin value by the at
the center of its bin(2) We normalize the result using a
trapezoidal numerical integration, so that, numerically
JFE(w)dw=1. It is easiest to see the probability distribu-
tion’s behavior on a natural log plot, so we plofHifw)/w] F(r')=2mr'nexp(— mnr'2)=2zr'n. 3.4
versusw?. The error bars are one standard deviation of the "
mean in length above and below; namely, we calculate the)singw= «r'/27(1/r'?— 1/R?), which is exact at the origin
standard deviation of If{w) and then divide by the square (r=0), and a good approximation at points not at the origin,
root of the number of actual events that fall into that histo-we get
gram bin. We present two graphs for each point sampled in
the uniform case(l) A graph that includes all numerical dr’
events(2) A graph with the “nearest-neighbor” events sub- Fn(w)=2a7r ’(w)nd—W. 3.9
tracted out. The subtraction procedure is defined relatively
simply and somewhat arbitrarily. At each point sampled, theThis F,(w) will be plotted as a dashed line when exhibiting
program records the distance to all of the vortices placed ifhe measured velocity distribution v&
the region. If the distancd is such thatd<0.65 then that
event is deleted from the distribution for that point only. That IV. RESULTS FOR UNIFORM VORTICITY
is, if there_ls a nearest-nelghbor event recordedjaIQO fqr DENSITY CASE
example, its removal wilhot affect the resulting distribution
at any other point. The resulting distribution can be thought Figures 1 and 2 display results for the numerically deter-
of as the probability distribution if there were never any mined velocity distribution for the uniform mean-field vor-
“nearest-neighbor” events. In each plot, the solid line is aticity density runs, a total of 3000 trials. Figure 1 shows
best-fit Gaussian given Hy'] results of sampling at=0, and Fig. 2 at =399, quite close

to the wall. At intermediate points, the results are quite simi-

27r'n(r’"), (3.D

(3.2

This equation is not hard to solve; its solution is

where C is a normalization constant such tf@l:n(r’)dr’
=1. In generalC~1/(1—e M), and sinceN>1, C=1. In
particular, forn=const and smalt’, we get

W w2 lar to those at =0.
F(w)= :zexp( — T) , (2.9 In Figs. 1@ and Xb), the solid line represents the Gauss-
w 2w ian, Eqg.(2.4), with the same mean-square velocity fluctua-
- tion. The dashed line represents the nearest-neighbor contri-
wherew is a measure of the average velocity and is numeribution, as predicted by Eq3.5. The “experimentally”
cally determined for a best fit. The dashed line represents asletermined points are shown with their associated error bars,
analytical expression for near-neighbor contributions in theestimated as described in Sec. Il. Figufa)lshows the re-
bounded case, which will be calculated below. sults for the raw data, with no nearest-neighbor events re-
moved. Figure (b) (the lower figure shows the results of
deleting the nearest-neighbor events. The reason no data
points appear above? of about 85 is that all the computed
Here we follow the general procedure of Chandrasekhapoints above that value contain nearest-neighbor events. A
[6], but carry it out in two dimensions and for a generalsimilar set of statements applies to Fig&2nd 2b), which
mean-field vorticity densityi(r) to get an analytical expres- are for the radius =399. In both cases, it appears that the

IIl. NEAREST NEIGHBORS
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FIG. 1. Plot of InE/w) vs w? atr=0 for the uniform case. The FIG. 3. Plot of(v,) vsr. thic_e th?T sharp drop towgrds zero
upper graph@ contains nearest-neighbor events. The lower grapH‘ear the wall ar =R=400. This is evidence of a relatively thin
(b) has nearest-neighbor events deleted. The solid line representgundary layer near the wall.

best fit GaussianW= 3.5). The dashed line is the analytical expres- ) ) )
sion for the nearest-neighbor effects. and we confirm the conjecture of Kuvshinov and Schep that

they may be explained as the result of nearest-neighbor con-

high-velocity events are reasonably well predicted by Eqtributions. Only near the radial boundary does its presence
(3.5. In both cases, the Gaussi&2.4) is clearly a good result in any significant departure from the statistics ob-
approximation only for the lower values of served in the interior, for this case.

Figure 3 shows the distribution of the numerically ob-
taine_d magnitude _of the_radial component of velocity as a V. NONUNIFORM MEAN-FIELD VORTICITIES:
function of r. The intent is tq assess the effect.of the rigid “MOST PROBABLE” DISTRIBUTIONS
boundary ar =400, the location of the wall. It will be seen
that the decrease of the radial velocities is significant only Up to this point, we have considered only the case of the
within a relatively thin boundary layer near the wall. If the uniform probability distribution for vortices. However, a
vortex dynamics were allowed to evolve in time, it is ex- much wider variety of thermal equilibrium states is possible
pected that the boundary layer would persist, but might acfor ideal line vortices, considered as a dynamical system
quire dimensions, not necessarily the same as observed, ffi2,4,5,10-18 and references thergiriThe Hamiltonian or
the purely random distribution. energy of the system is equivalent to the Coulomb energies

Summarizing, we conclude that for the case in which theof the pairs of interacting line vortices, summed over all the
uniform mean-field vorticity density applies, there are indeedpairs, and is a constant of the motion for these boundary
non-Gaussian tails present in the probability distributionsconditions. More extensive investigations have been carried
out for the two-species case than for the present one-species
case, but one species may equally well be considered. The
preceding results do not apply to any value of the energy
expectation(which is determined by the initial conditions
chosen when the system is considered dynamicatgept
the one associated with the completely uniform mean-field
distribution. For either higher or lower energies, the thermal
equilibrium, mean-field, one-body distribution is not spa-
tially uniform. It is concentrated towand=0 for higher en-
ergies, and around the rim for lower ones. In this section, we
provide an expression for the probability distribution for
these higher- and lower-energy cases, referring to the rather
extensive cited literature for the formalism and justification
(Refs.[10-16, and references thergin

We find the mean fields from solving the one-species ana-
logue of the “sinh-Poisson” equation,

FIG. 2. Plot of InfF/w) vs w? at r =399 for the uniform case.
The upper grapha) contains nearest-neighbor events. The lower
graph(b) has nearest-neighbor events deleted. The solid line repre-
sents a best fit Gaussiaw € 3.0). The dashed line is the analytical wherey is the “most probable” stream function, andlis its
expression for the nearest-neighbor effects. associated mean-field vorticity distribution. In the present

Viy=—w=—e P (5.1)
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case, it will be assumed that the relevant solutions are sym-

metric with respect to rotations about 0.

Equation(5.1) is to be solved subject to the constraint that

E=31(Vy)2d?>x and Q=-[V2yd>, where £ is the
mean-field energy, an@ is the total vorticity. If we assume
¢ is a function of radius only, Eq(5.1) becomes simply
Urd/drr(dyl/dr)=—w=—e " #¥ which is sometimes
called Liouville’s equation and has been widely studied.,
Ref. [17]).

We may solve the equation fap by writing w=c4/(1

+¢,r?)2. Taking the Laplacian of the natural logarithm, we

get

8c, B
B(1+c,r?)?

C1

- (1+c,r?)2
(5.2

1d dy
rarar

The equality demands that = —8c,/B. Inserting the ex-
pression into the constraint equations, we find that

8w CR? 5.33
B 1+c,R? '
e= 2T (14 6,R?) R (5.3
=—|In(1+c,R)— ———|. :
2 2 1+c,R?

The goal is to solve Eqg5.39 and (5.3b for the constants
c, and B. The result is

c,R?

E 1 (1+c,R?»?
1+ c,R?

_ 2\
02 BT (R In(1+c,R?)

(5.9

which must be solved numerically fay, in terms of() and
E. The result is B=—(8m/Q)c,R?(1+c,R?) ! and w
=0/ 7R?*(1+c,R?)/(1+c,r?)?, wherec, is given by Eq.

PHYSICAL REVIEW E 63 056311

I p(r.9)

300 400

FIG. 4. Plot showingp(r,0) vsr. The solid line is the case
where£=4¢&,. The dashed line is the case whére &y /4.

VI. RESULTS FOR NONUNIFORM TRIALS

As might be expected, noticeable differences occur when
the mean-field vorticity is a function of radius. First, the
mean azimuthal velocity no longer corresponds to a rigid
rotation, and the fluctuating velocity must be referred to it
locally. Qualitatively, it might be expected that the higher-
energy trials will produce more nearest-neighbor events, at
constant mean density over the whole circle, and hence a
more intense velocity fluctuation spectrum, and the opposite
for the lower-energy cases. That seems to be what happens.

We conducted two runs of 1790 trials each, witk-1.6
X 10° andR=400, as before. One of the sets of trials corre-
sponded to mean-field energy= 4&, and the other set t6
=&y/4. Figure 4 shows the mean probability distribution,
Eq. (5.5, evaluated for the two cases. Consistent with Am-
pere’s law and the remarks above, m@esg vorticity must
be crowded toward the origin for the highéower) energies.

(5.4). We have now expressed the mean-field vorticity di-we should bear in mind that associated with each individual
rectly in terms of energy and vorticity. It follows that when Jine vortex, there is an infinite positive self-energy. This is
placing vortices “randomly” into the circular region for nu- not included in what we are calling the “mean-field en-

merical trials, we should weight their placements by a pl’Ob-ergy,” which is a sum of potential energies between pairs

ability distribution that will lead to the correch in the
mean-field limit. That is,

.81 d r 1+c,R?
r,o)rdr=————
P 7R? (1+c,r?)?

(5.9

Here, the radial probability densityis normalized such that

only. Nevertheless, choosing mean-field energies above that
of the uniform distribution greatly enchances the ability of a
given number of line vortices to strengthen the high-velocity
tails; crowding the vortices together produces more opportu-
nities for nearest-neighbor events in the regions of enhanced
mean-field vorticity. Also, where there is a high probability
density, we may expect a large value of the average velocity

Sp(r,0)rdrdé=1. The spatially uniform case treated pre- that is not attributable to nearest-neighbor events.

viously corresponds to the casg—0, where we getf,

Figure 5 displays the vorticity probability distribution at

= (/8. The nearest-neighbor formula must be modified to' = 40-7 for the€=4&, case; this is inside the region of high

E w)=2r'( )N 1+c,R?  dr’
w)=2r'(w)— ———— —
" R? [1+cC,r'23(w)]? dw

12
><exp(—(1+c2R2)ﬁ rew) . (5.6

R? 1+c,r'?(w)

radial probability density. Note the very large valuemtind

the associated large valueswf. The probability of finding

a vortex near this point is so high, in fact, that every single

trial contained at least one nearest-neighbor event, so the
corresponding graph with nearest-neighbor events deleted
has no data points in it, according to our previously chosen

criterion. We also observe that the nearest-neighbor formula
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In(F/w)

1000 2000 2 3000 4000 5000

FIG. 5. Plot of InF/w) vs w? atr=40.7 for theE=4&, case.

. . FIG. 7. Plot of InE/w) vsw? atr =399 for the€=4&, case. The
Here, every point has a nearest-neighbor event recorded and thus . .
upper graph(@ contains nearest-neighbor events. The lower graph

the corresponding graph with nearest-neighbor events deleted cor(b) has nearest-neighbor events deleted. The solid line represents a

tfuns no points. Th‘? so_hd line reprgsents a bgst fit Gaussian (Pest fit GaussianW=0.35). The dashed line is the analytical ex-
=17). The dashed line is the analytical expression for the nearest- . .
pression for the nearest-neighbor effects.

neighbor effects.

(broken ling and the Gaussia(solid line) are not far apart nearest-neighbor calculation is of severely limited applicabil-
for this case. ity. The Gaussian is still present, as is the high-velocity tail,
Figures 6a) and Gb) are also for the high-energy case, but the high-velocity tail does not disappear when the
but sample the velocity field at=114, an intermediate nearest-neighbor events are deleted. The nearest-neighbor
value. Here we observe, as in the uniform vorticity densityformula derivation takes no account of the proximity of the
case, a noticeable high-velocity tail attributable to thewall, effectively assuming a rotational symmetry about the
nearest-neighbor events, which disappears when those evemgint of observation, which is not even approximately ful-
are deleted. The much lower valuewt 3.3 is close to what filled near the wall. The boundary condition begins to make
was seen in the uniform vorticity case, and far lower than inftSelf strongly felt in this case, and it is not obvious how to
Figs. 5a) and 5b). Not only the mean fields, but the statis- Include it in any theory. . .
tics of the fluctuations, are now strongly position dependent. Turning now to the second set of trials, wifk= £, /4, we
This point is made even more strongly by looking at theconsider the case where the probability is C_oncentrated near
velocity distribution at =399, near the wallFigs. 7a) and  the walls. We present the results of sampling at the radius

7(b)]. Here, where the probability distribution is very low, ' =147 [Figs. &) and 8b)]. This is again an intermediate
there is little velocity fluctuation w=0.35). Here, the regime where the results are not greatly different from the

0
(b)
r;\ _5_..” A e T T By ______-_—___—__ ;;;; 4
& -
S O b T 4
-15 : : : -15 : : : :
0 100 200 300 400 0 50 100 150 200 250
w2 w2

FIG. 6. Plot of InF/w) vsw? atr =114 for the€=4&, case. The FIG. 8. Plot of InF/w) vs w? atr =147 for thef=&,/4 case.

upper graph@ contains nearest-neighbor events. The lower graphiThe upper grapia) contains nearest-neighbor events. The lower
(b) has nearest-neighbor events deleted. The solid line representgyaaph(b) has nearest-neighbor events deleted. The solid line repre-

best fit Gaussian\ﬁ=3.3). The dashed line is the analytical expres- sents a best fit GaussiavT(z 2.3). The dashed line is the analytical
sion for the nearest-neighbor effects. expression for the nearest-neighbor effects.
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10 ; g ; ® The phenomenon of non-Gaussian high-velocity tails in
' : ' = measurement and computation of three-dimensional con-
tinuum fluid turbulence has been observed beferg., Vin-
cent and MeneguzZil8]; see also Jimend®]). In compu-
tations, also simultaneously visible have been concentrated
vortex configurations that have variously been called
“tubes,” “worms,” or “spaghetti,” since they are longer by
a considerable amount in one dimension than they are in the
other two. Accounting for these configurations has been an
: : : : important problem. It is difficult not to imagine that the one
P TR OO S i might be responsible for the other. That is, we suggest that
5 5 5 the non-Gaussian tails are a signature of physically proxi-
: i i mate strong, tubular vortices, which are enough like “line”
% 1 > 3 4 vortices that they account for the tails in three dimensions in
8/80 the manner observed here in pure two-dimensional form.

A second part of the investigation has been motivated by
the recognition that pairwise interaction energies, summed
over all the pairs of an assembly of identical line vortices,
provides a finite integral of the motion that can be set at any
value, and determines as much about the thermal equilibria,
. that are possible, as energy usually does for conservative
case and the uniforre case. L . . .

In summary, there are some strong qualitative simiIaritiesSF"j‘t'TQ’t'C"?Il'mecr.]am'CaI systems._ The nonunlform me_an-fleld

distribution which results, can impact the microscopic fluc-

between the uniform and nonuniform mean-field vorticity . istribution f . f . .
cases: the division into Gaussian plus high-velocity tail istu@tion distribution for a fixed number of vortices by creating
more (and therefore noisigrregions where “near neigh-

usually applicable. One principal quantitative difference is C i
that the fluctuation level becomes more intense for the highPors” reside. Such an effect will undoubtedly enhance trans-

energy cases in those regions where the vorticity is concerRort properties, such as the coefficient of self-diffudigr],
trated. The mean velocity can also go up, and the mean fielgecause of the larger random velocities that result.

also becomes more intense. The overall fluctuation level It would be of interest to follow up these investigations
goes up dramatically with mean-field energy. Though we dovith dynamical computations, in which an assembly of line
not have a theory for how fast it should go up, we can se&ortices was moved around by its self-consistent velocity
from Fig. 9 that it is considerably faster than linear. Figure 9field, with an eye toward measuring two-time statistical cor-
shows the mean-field energy, normalized to the unifornrelations of Eulerian velocity fields, diffusion, and decay
mean-vorticity values, as a function of mean-field energy, forates. Measured coefficients of self-diffusion may be deter-
the three values of mean-field energy considered. Addingnined numerically, and may be found to depend fundamen-
points to this graph is an expensive and time-consuming aqally on the mean-field energy and consequent temperature
tivity, but would seem to be a worthwhile undertaking. Thethat characterize a vortex equilibrium, not representable by
significantly noisier high-energy states for the system isany “universal” formula. Much earlier computations and
Something that will be characteristic of the ideal line VOI’tEXtheories for ideal line vortex dynam|@g_11] showed unex-

FIG. 9. Average oi/vzlwé for every point sampled plotted as a
function of £/&,, wherew?=23.3 is the value af,.

uniform mean-vorticity case. Closer to the wall, the locally
larger values op again diminish the differences between this

model but not for continuum models of a fluid. pected late implications for Navier-Stokes fluid turbulence in
two dimensions[14,15. Standard “homogeneous turbu-
VII. CLOSING REMARKS lence” theories were shown to be very poor predictors for

] ) ] o the late-time states of turbulent fluids in two dimensions,
We have investigated numerically the statistics of the Eupnce this step was taken. We may speculate that the present
lerian velocity field in two-dimensional flows generated by aconsiderations, which extend Holtsmark statistics beyond the
large number of ideal, parallel, line vortices inside an axi-spatially uniform case, might substantially revise, for ex-
symmetric rigid boundary. This is a dynamical system, theample, the magnitudes of transport coefficients that are often
statistical mechanics of which have been interesting to invesassigned to such diverse systems as galaxies or globular clus-

tigate in their own right, and which also seem to have imp”'ters[6] and dilute magnetized plasmgg4].
cations, not fully elucidated, for two-dimensional viscous

continuum flowg 14—16. By considering the numerical ef-
fects of “near neighbors” and their contributions to the ve-
locity fields at fixed spatial points, we have to a considerable
degree, confirmed the hypothesis of Kuvshinov and Schep One of us(T.S.L) was supported under a Waterhouse
[7] that the observed non-Gaussian, approximately thirdesearch grant from Dartmouth College. The otfizIiC.M.)
power “tails” in the velocity field distribution, are due to would like to express gratitude for hospitality in the Fluid
these near-neighbor events. These tails coexist with ®ynamics Laboratory at the Eindhoven Technical University
“bulk” Gaussian distribution at lower velocities. in the Netherlands, where part of this work was carried out.
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