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Velocity field distributions due to ideal line vortices

Thomas S. Levi and David C. Montgomery
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755-3528

~Received 28 September 2000; published 24 April 2001!

We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid
model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid
circular boundary. We focus on ‘‘nearest-neighbor’’ contributions that result from vortices that fall~randomly!
very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a
non-Gaussian high-velocity ‘‘tail’’ on an otherwise Gaussian distribution function for the Eulerian velocity
field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability
distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find substantial differences between
these and the uniform case.
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I. INTRODUCTION

Study of the hydrodynamics of ideal line vortices go
back at least as far as Helmholtz in the 19th century, and
developed in the 20th by Lin@1# and Onsager@2#, who first
made the dynamical system an object of statistic
mechanical inquiry. The system appeared in plasma phy
when Taylor and McNamara@3,4# calculated the Bohm-like
coefficients of self-diffusion for a strongly magnetized, tw
dimensional, electrostatic guiding-center plasma mode
system whose mathematical description becomes iden
with that of the ideal line vortex system under appropri
substitutions; the fact that these diffusion coefficients w
inversely proportional to the first power of the magne
field, even in thermal equilibrium, was startling.

The system is one for which interesting statistic
mechanical and fluid-mechanical questions can be asked
must be asked with care, for two reasons. First, viscous
fects have never been fully included in the model, althou
some forms of Navier-Stokes behavior have, on occas
been observed for it. Second, no classical, extensive ‘‘th
modynamic limit’’ exists for the system in the convention
sense, and the partition function, even for the case in wh
there is no overall net vorticity, does not in general exist
the infinite volume limit@5#. None of the standard machiner
of equilibrium statistical mechanics can be trusted co
pletely without re-examination.

One question that can be asked, motivated in part by v
ous probability distribution function measurements for turb
lent fluid velocities that have been made in recent ye
concerns the distribution of the velocity field at a fixed po
in space, one at which no vortex necessarily resides.
field in question is one that is produced by all the vortic
This is a close analogue of the question of the probab
distribution of the vector gravitational field due to a lar
collection of point masses, a question addressed in deta
Chandrasekhar in 1943@6#. Under the assumption that th
point masses in three dimensions are uniformly distribu
and uncorrelated, the resulting Holtsmark distribution h
1063-651X/2001/63~5!/056311~8!/$20.00 63 0563
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many nonstandard properties, including the divergence
some of its low-order moments, a consequence of the l
range of the inverse-square force field and the fact that p
masses~or charges! each have an infinite ‘‘self-energy’’ tha
reflects itself in the total force field when the single-partic
contributions are combined additively.

In a recent interesting paper@7#, Kuvshinov and Schep
considered the statistics of the velocity field of a large b
finite number of ideal line vortices inside a circular bounda
~see also the paper of Chukbar@8#, which is of some impor-
tance!. They assumed uniformly distributed and uncorrela
line vortices of a single sign of vorticity. They noted that th
Holtsmark-style treatment carried out by Chandrasekhar
the three-dimensional case contained a divergent integra
two dimensions, and so was not immediately applicab
They then performed repeated numerical measurement
the two-dimensional velocity field, near the center of t
circular boundary, that resulted from uncorrelated rand
distributions of a large numbers of vortices, thrown at ea
trial into the circular boundary without correlation and wit
out any mean density variation.

The most interesting result of Kuvshinov and Schep w
an ‘‘experimentally’’ determined probability distribution fo
the velocity, which seemed to split naturally into two parts
Gaussian distribution for the lower velocities and hig
energy ‘‘tails’’ for the larger velocities that fell off approxi
mately as the third power of the fluctuating velocity.~Here,
‘‘fluctuating’’ velocities are interpreted to mean those wi
the mean-field rigid rotation associated with the uniform v
ticity density distribution subtracted out.! They hypothesized
that the approximate inverse third-power dependence of
tail was a consequence of occasional ‘‘near-neighbor’’ c
tributions, in which one vortex found itself very close to th
point where the velocity field was being sampled, and g
eralized a three-dimensional ‘‘nearest-neighbor’’ algebr
argument of Chandrasekhar’s@6# to account for this high-
velocity power law contribution. In a rather different con
tinuum model, something not totally dissimilar had prev
ously been reported by Jimenez@9#.
©2001 The American Physical Society11-1
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We have in this paper repeated certain features of Kuv
nov and Schep’s numerical experiment, and have attem
to modify and amplify it in a variety of ways.~1! We have
inserted an ideal, perfectly reflecting wall boundary at
radius of the confining circle by changing the Green’s fun
tion to one that, by the method of images, guarantees
vanishing of all radial velocities at the boundary@10#, rather
than using the inverse logarithmic Green’s function app
priate to the unbounded region.~2! We have, upon finding
the non-Gaussian high-velocity tails in the probability dist
bution function, implemented a program that searches
merically for near-neighbor contributions to the locally me
sured velocity field, and when it finds one, deletes
contribution to the local velocity field. We find that as
consequence, the high-velocity tails disappear, thus reinf
ing the conjecture of Ref.@7#. ~3! We study the velocity field
away from the origin, to determine how the velocity fie
sampled at the center is representative of the entire sp
volume.~4! Finally, we allow the mean vorticity density with
which the vortex particles are distributed to vary, and rat
than placing them randomly with a spatially uniform mea
field distribution, we weight their locations with a probabili
distribution function that depends exponentially upon
mean-field stream function and has a temperature that ca
positive or negative@10,11#. The equilibrium statistical me
chanics of the ideal line vortex system has undergone c
siderable development since it was introduced~e.g.,@10–13#,
and references therein! and we take advantage of results b
will not go into full detail describing them here. We no
only that the pairwise, additive Coulomb potentials, summ
over all the pairs in the system, are an ideal invariant
namically, which can take on virtually any value and th
determines the single-time thermal-equilibrium probabil
distributions of all particles. Only one value of this energy
represented by the uniform distribution. We find significa
differences in the velocity field statistics that result from to
mean energies that are significantly higher or lower th
those associated with the uniform~rigidly rotating! mean-
field distribution.

In Sec. II, we describe the computational procedure
the results for the uniform mean-field vorticity density d
tribution for points near the center of the circle, with a
emphasis on non-Gaussian, high-velocity ‘‘tails’’ that appe
in the probability distribution function for the velocity. In
Sec. III, we introduce a cutoff below which ‘‘near-neighbor
contributions to the velocity field are locally removed, a
derive an analytic expression for the contribution of ve
near neighbors to the local velocity field distribution. Secti
IV discusses the statistics of the velocity field for the u
form density distribution away from the center of the co
tainer and near the boundary. Section V is devoted to
case in which the mean number density of vortices is
uniform, but rather follows from a self-consistent, mean-fie
theory that permits the study of high- and low-energy sta
relative to the uniform density state. Section VI presents
results for the nonuniform mean-field distributions. Sect
VII summarizes the results and indicates possible future
rections for further investigations.
05631
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II. GENERAL PROCEDURE

In a point vortex model, where each vortex has stren
k j , the flow is two-dimensional in the (x,y) plane, has only
x andy components, and is given by

v~r !5(
j

k j“3@G~r ,r j !ez#. ~2.1!

Hereez is the unit vector pointing perpendicular to the pla
of the spatial variation of the fluid,G is the Green’s function
that relates the vorticity to the stream function, and the s
is over all ~two-dimensional! vortex positionsr j . Thus, we
see that the velocity at a given point is due to all the vortic
not at that point. For a two-dimensional fluid, in a rigi
circular container of radiusR, the boundary condition is tha
the normal component ofv goes to zero at the wall. The
appropriate Green’s function to choose is@10#

G~r ,r 8!5
1

2p
ln~ ur2r 8u!2

1

2p
lnS Ur2

R2

r 82
r 8U r 8

RD ,

~2.2!

where we have replacedr j with r 8. Using Eq.~2.1! we get

v r5
k

2p S R2r 8 sinu12

r 2r 821R422R2rr 8 cosu12

2
r 8 sinu12

r 21r 8222rr 8 cosu12
D , ~2.3a!

vu5
k

2p S 2
rr 822R2r 8 cosu12

r 2r 821R422R2rr 8 cosu12

1
r 2r 8 cosu12

r 21r 8222rr 8 cosu12
D , ~2.3b!

wherev r andvu represent ther andu components of veloc-
ity due to one point vortex of strengthk, andu12 is the angle
between the radii to the point where the velocity is measu
and the position of the vortex. For each component the te
with R represent the terms that are a result of the fin
boundary.

All quantities will be expressed throughout in terms
dimensionless variables appropriate to the model. Since
Euler dynamics contain no viscosity, all quantities in t
dynamics before nondimensionalization contain only com
nations of lengths and times, or equivalently, velocities a
times, so units are not of great significance. For a conven
basic unit of length, we may take the mean nearest-neigh
separation in a uniform vorticity benchmark case divided
p1/2 and for the basic unit of velocity, the speed with whic
an isolated vortex of strength 2p will rotate the fluid in
which it is imbedded at unit length distance from the vorte

The general procedure we use is to place a large num
N of vortices of strengthk52p into a circular region of
radius R using a random number generator and study
statistics of the resulting velocity field. Specifically, we e
1-2
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VELOCITY FIELD DISTRIBUTIONS DUE TO IDEAL . . . PHYSICAL REVIEW E 63 056311
amine the probability distribution for the scalar fluctuati
velocity uwu5w, wherew5v2V, and V is the mean-field
velocity. Let f (w)dw be the probability that the velocity is in
the area element~in velocity space! dw centered atw. We
are here assuming that the distribution is isotropic in veloc
space, which is confirmed by our numerics everywhere
cept in a very thin layer near the radial boundary. We wish
switch to a one-dimensional integral, which is done by l
ting F(w)dw52pw f(w) dw. The resulting distribution
F(w) is normalized such that*o

`F(w)dw51. Our graphs
contain a numerically obtainedF(w). The procedure for ob-
taining thisF is to first run a series of trials, each trial re
resenting a set of random choices for the vortex positi
inside the circle. For the uniform vorticity density case, w
have run 3000 trials. Then, we record a velocity value
each point sampled in the circle. Here we have sampled a
points separated by uniform intervals fromr 50 to r 5399,
whereR5400 andN51.63105. We then bin the velocities
using a histogram with uniform spacing between bins. T
procedure gives us an unnormalized probability distribut
for f. To get from this step to the actualF plotted requires
two steps:~1! We first multiply each bin value by thew at
the center of its bin.~2! We normalize the result using
trapezoidal numerical integration, so that, numerica
*F(w) dw51. It is easiest to see the probability distrib
tion’s behavior on a natural log plot, so we plot ln@F(w)/w#
versusw2. The error bars are one standard deviation of
mean in length above and below; namely, we calculate
standard deviation of ln(F/w) and then divide by the squar
root of the number of actual events that fall into that his
gram bin. We present two graphs for each point sample
the uniform case:~1! A graph that includes all numerica
events.~2! A graph with the ‘‘nearest-neighbor’’ events su
tracted out. The subtraction procedure is defined relativ
simply and somewhat arbitrarily. At each point sampled,
program records the distance to all of the vortices place
the region. If the distanced is such thatd,0.65 then that
event is deleted from the distribution for that point only. Th
is, if there is a nearest-neighbor event recorded atr 5200 for
example, its removal willnot affect the resulting distribution
at any other point. The resulting distribution can be thou
of as the probability distribution if there were never a
‘‘nearest-neighbor’’ events. In each plot, the solid line is
best-fit Gaussian given by@7#

F~w!5
w

w̄2
expS 2

w2

2w̄2D , ~2.4!

wherew̄ is a measure of the average velocity and is num
cally determined for a best fit. The dashed line represent
analytical expression for near-neighbor contributions in
bounded case, which will be calculated below.

III. NEAREST NEIGHBORS

Here we follow the general procedure of Chandrasek
@6#, but carry it out in two dimensions and for a gene
mean-field vorticity densityn(r ) to get an analytical expres
05631
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sion for nearest-neighbor events. LetFn(r 8)dr8 represent the
probability that the nearest neighbor lies betweenr 8 and r 8
1dr8. This probability must be equal to the probability th
no neighbors are interior tor 8 times the probability that a
particles does exist in the circular shell betweenr 8 and r 8
1dr8. ThusFn(r 8) must satisfy@6#

Fn~r 8!5S 12E
0

r 8
Fn~r !dr D 2pr 8n~r 8!, ~3.1!

wherer 8 is the distance to the nearest neighbor. Differen
ating both sides, we get a differential equation forFn

d

dr8
S Fn~r 8!

2pr 8n~r 8!
D 522pr 8n~r 8!

Fn~r 8!

2pr 8n~r 8!
. ~3.2!

This equation is not hard to solve; its solution is

Fn~r 8!52pr 8n~r 8!C expS 22pE
0

r 8
n~r !r dr D , ~3.3!

where C is a normalization constant such that*0
RFn(r 8)dr8

51. In general,C;1/(12e2N), and sinceN@1, C>1. In
particular, forn5const and smallr 8, we get

Fn~r 8!52pr 8n exp~2pnr82!>2pr 8n. ~3.4!

Usingw5kr 8/2p(1/r 8221/R2), which is exact at the origin
(r 50), and a good approximation at points not at the orig
we get

Fn~w!52pr 8~w!n
dr8

dw
. ~3.5!

This Fn(w) will be plotted as a dashed line when exhibitin
the measured velocity distribution vsw.

IV. RESULTS FOR UNIFORM VORTICITY
DENSITY CASE

Figures 1 and 2 display results for the numerically det
mined velocity distribution for the uniform mean-field vo
ticity density runs, a total of 3000 trials. Figure 1 show
results of sampling atr 50, and Fig. 2 atr 5399, quite close
to the wall. At intermediate points, the results are quite sim
lar to those atr 50.

In Figs. 1~a! and 1~b!, the solid line represents the Gaus
ian, Eq. ~2.4!, with the same mean-square velocity fluctu
tion. The dashed line represents the nearest-neighbor co
bution, as predicted by Eq.~3.5!. The ‘‘experimentally’’
determined points are shown with their associated error b
estimated as described in Sec. II. Figure 1~a! shows the re-
sults for the raw data, with no nearest-neighbor events
moved. Figure 1~b! ~the lower figure! shows the results o
deleting the nearest-neighbor events. The reason no
points appear abovew2 of about 85 is that all the compute
points above that value contain nearest-neighbor event
similar set of statements applies to Figs. 2~a! and 2~b!, which
are for the radiusr 5399. In both cases, it appears that t
1-3
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THOMAS S. LEVI AND DAVID C. MONTGOMERY PHYSICAL REVIEW E63 056311
high-velocity events are reasonably well predicted by E
~3.5!. In both cases, the Gaussian~2.4! is clearly a good
approximation only for the lower values ofw.

Figure 3 shows the distribution of the numerically o
tained magnitude of the radial component of velocity a
function of r. The intent is to assess the effect of the rig
boundary atr 5400, the location of the wall. It will be see
that the decrease of the radial velocities is significant o
within a relatively thin boundary layer near the wall. If th
vortex dynamics were allowed to evolve in time, it is e
pected that the boundary layer would persist, but might
quire dimensions, not necessarily the same as observed
the purely random distribution.

Summarizing, we conclude that for the case in which
uniform mean-field vorticity density applies, there are inde
non-Gaussian tails present in the probability distributio

FIG. 1. Plot of ln(F/w) vs w2 at r 50 for the uniform case. The
upper graph~a! contains nearest-neighbor events. The lower gra
~b! has nearest-neighbor events deleted. The solid line represe

best fit Gaussian (w̄53.5). The dashed line is the analytical expre
sion for the nearest-neighbor effects.

FIG. 2. Plot of ln(F/w) vs w2 at r 5399 for the uniform case
The upper graph~a! contains nearest-neighbor events. The low
graph~b! has nearest-neighbor events deleted. The solid line re

sents a best fit Gaussian (w̄53.0). The dashed line is the analytic
expression for the nearest-neighbor effects.
05631
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and we confirm the conjecture of Kuvshinov and Schep t
they may be explained as the result of nearest-neighbor
tributions. Only near the radial boundary does its prese
result in any significant departure from the statistics o
served in the interior, for this case.

V. NONUNIFORM MEAN-FIELD VORTICITIES:
‘‘MOST PROBABLE’’ DISTRIBUTIONS

Up to this point, we have considered only the case of
uniform probability distribution for vortices. However,
much wider variety of thermal equilibrium states is possib
for ideal line vortices, considered as a dynamical syst
~@2,4,5,10–16#, and references therein!. The Hamiltonian or
energy of the system is equivalent to the Coulomb energ
of the pairs of interacting line vortices, summed over all t
pairs, and is a constant of the motion for these bound
conditions. More extensive investigations have been car
out for the two-species case than for the present one-spe
case, but one species may equally well be considered.
preceding results do not apply to any value of the ene
expectation~which is determined by the initial condition
chosen when the system is considered dynamically! except
the one associated with the completely uniform mean-fi
distribution. For either higher or lower energies, the therm
equilibrium, mean-field, one-body distribution is not sp
tially uniform. It is concentrated towardr 50 for higher en-
ergies, and around the rim for lower ones. In this section,
provide an expression for the probability distribution f
these higher- and lower-energy cases, referring to the ra
extensive cited literature for the formalism and justificati
~Refs.@10–16#, and references therein!.

We find the mean fields from solving the one-species a
logue of the ‘‘sinh-Poisson’’ equation,

“

2c52v52e2a2bc, ~5.1!

wherec is the ‘‘most probable’’ stream function, andv is its
associated mean-field vorticity distribution. In the prese

h
s a

-

r
e-

FIG. 3. Plot of ^v r& vs r. Notice the sharp drop towards zer
near the wall atr 5R5400. This is evidence of a relatively thin
boundary layer near the wall.
1-4
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VELOCITY FIELD DISTRIBUTIONS DUE TO IDEAL . . . PHYSICAL REVIEW E 63 056311
case, it will be assumed that the relevant solutions are s
metric with respect to rotations aboutr 50.

Equation~5.1! is to be solved subject to the constraint th
E5 1

2 *(“c)2 d2x and V52*“2c d2x, where E is the
mean-field energy, andV is the total vorticity. If we assume
c is a function of radius only, Eq.~5.1! becomes simply
1/r d/dr r (dc/dr)52v52e2a2bc, which is sometimes
called Liouville’s equation and has been widely studied~e.g.,
Ref. @17#!.

We may solve the equation forc by writing v5c1 /(1
1c2r 2)2. Taking the Laplacian of the natural logarithm, w
get

1

r

d

dr
r

dc

dr
5

8c2

b~11c2r 2!2
52v52

c1

~11c2r 2!2
.

~5.2!

The equality demands thatc1528c2 /b. Inserting the ex-
pression into the constraint equations, we find that

V52
8p

b

c2R2

11c2R2
, ~5.3a!

E5
8p

b2 F ln~11c2R2!2
c2R2

11c2R2G . ~5.3b!

The goal is to solve Eqs.~5.3a! and ~5.3b! for the constants
c2 andb. The result is

E
V2

5
1

8p

~11c2R2!2

~c2R2!2 F ln~11c2R2!2
c2R2

11c2R2G ,

~5.4!

which must be solved numerically forc2 in terms ofV and
E. The result is b52(8p/V)c2R2(11c2R2)21 and v
5V/pR2(11c2R2)/(11c2r 2)2, wherec2 is given by Eq.
~5.4!. We have now expressed the mean-field vorticity
rectly in terms of energy and vorticity. It follows that whe
placing vortices ‘‘randomly’’ into the circular region for nu
merical trials, we should weight their placements by a pr
ability distribution that will lead to the correctv in the
mean-field limit. That is,

p~r ,u!r dr 5
r

pR2

11c2R2

~11c2r 2!2
dr. ~5.5!

Here, the radial probability densityp is normalized such tha
*p(r ,u)r dr du51. The spatially uniform case treated pr
viously corresponds to the casec2→0, where we getE0
5V2/8p. The nearest-neighbor formula must be modified

Fn~w!52r 8~w!
N

R2

11c2R2

@11c2r 82~w!#2

dr8

dw

3expS 2~11c2R2!
N

R2

r 82~w!

11c2r 82~w!
D . ~5.6!
05631
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VI. RESULTS FOR NONUNIFORM TRIALS

As might be expected, noticeable differences occur wh
the mean-field vorticity is a function of radius. First, th
mean azimuthal velocity no longer corresponds to a ri
rotation, and the fluctuating velocity must be referred to
locally. Qualitatively, it might be expected that the highe
energy trials will produce more nearest-neighbor events
constant mean density over the whole circle, and henc
more intense velocity fluctuation spectrum, and the oppo
for the lower-energy cases. That seems to be what happ

We conducted two runs of 1790 trials each, withN51.6
3105 andR5400, as before. One of the sets of trials cor
sponded to mean-field energyE54E0 and the other set toE
5E0 /4. Figure 4 shows the mean probability distributio
Eq. ~5.5!, evaluated for the two cases. Consistent with A
pere’s law and the remarks above, more~less! vorticity must
be crowded toward the origin for the higher~lower! energies.
We should bear in mind that associated with each individ
line vortex, there is an infinite positive self-energy. This
not included in what we are calling the ‘‘mean-field e
ergy,’’ which is a sum of potential energies between pa
only. Nevertheless, choosing mean-field energies above
of the uniform distribution greatly enchances the ability o
given number of line vortices to strengthen the high-veloc
tails; crowding the vortices together produces more oppo
nities for nearest-neighbor events in the regions of enhan
mean-field vorticity. Also, where there is a high probabili
density, we may expect a large value of the average velo
that is not attributable to nearest-neighbor events.

Figure 5 displays the vorticity probability distribution a
r 540.7 for theE54E0 case; this is inside the region of hig
radial probability density. Note the very large value ofw̄ and
the associated large values ofw2. The probability of finding
a vortex near this point is so high, in fact, that every sin
trial contained at least one nearest-neighbor event, so
corresponding graph with nearest-neighbor events del
has no data points in it, according to our previously chos
criterion. We also observe that the nearest-neighbor form

FIG. 4. Plot showingrp(r ,u) vs r. The solid line is the case
whereE54E0. The dashed line is the case whereE5E0 /4.
1-5
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THOMAS S. LEVI AND DAVID C. MONTGOMERY PHYSICAL REVIEW E63 056311
~broken line! and the Gaussian~solid line! are not far apart
for this case.

Figures 6~a! and 6~b! are also for the high-energy cas
but sample the velocity field atr 5114, an intermediate
value. Here we observe, as in the uniform vorticity dens
case, a noticeable high-velocity tail attributable to t
nearest-neighbor events, which disappears when those e
are deleted. The much lower value ofw̄53.3 is close to what
was seen in the uniform vorticity case, and far lower than
Figs. 5~a! and 5~b!. Not only the mean fields, but the stati
tics of the fluctuations, are now strongly position depende
This point is made even more strongly by looking at t
velocity distribution atr 5399, near the wall@Figs. 7~a! and
7~b!#. Here, where the probability distribution is very low
there is little velocity fluctuation (w̄50.35). Here, the

FIG. 5. Plot of ln(F/w) vs w2 at r 540.7 for theE54E0 case.
Here, every point has a nearest-neighbor event recorded and
the corresponding graph with nearest-neighbor events deleted

tains no points. The solid line represents a best fit Gaussianw̄
517). The dashed line is the analytical expression for the nea
neighbor effects.

FIG. 6. Plot of ln(F/w) vs w2 at r 5114 for theE54E0 case. The
upper graph~a! contains nearest-neighbor events. The lower gra
~b! has nearest-neighbor events deleted. The solid line represe

best fit Gaussian (w̄53.3). The dashed line is the analytical expre
sion for the nearest-neighbor effects.
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nearest-neighbor calculation is of severely limited applica
ity. The Gaussian is still present, as is the high-velocity t
but the high-velocity tail does not disappear when t
nearest-neighbor events are deleted. The nearest-neig
formula derivation takes no account of the proximity of t
wall, effectively assuming a rotational symmetry about t
point of observation, which is not even approximately fu
filled near the wall. The boundary condition begins to ma
itself strongly felt in this case, and it is not obvious how
include it in any theory.

Turning now to the second set of trials, withE5E0 /4, we
consider the case where the probability is concentrated
the walls. We present the results of sampling at the rad
r 5147 @Figs. 8~a! and 8~b!#. This is again an intermediat
regime where the results are not greatly different from

us,
n-

st-

h
s a

-

FIG. 7. Plot of ln(F/w) vs w2 at r 5399 for theE54E0 case. The
upper graph~a! contains nearest-neighbor events. The lower gra
~b! has nearest-neighbor events deleted. The solid line represe

best fit Gaussian (w̄50.35). The dashed line is the analytical e
pression for the nearest-neighbor effects.

FIG. 8. Plot of ln(F/w) vs w2 at r 5147 for theE5E0 /4 case.
The upper graph~a! contains nearest-neighbor events. The low
graph~b! has nearest-neighbor events deleted. The solid line re

sents a best fit Gaussian (w̄52.3). The dashed line is the analytic
expression for the nearest-neighbor effects.
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uniform mean-vorticity case. Closer to the wall, the loca
larger values ofp again diminish the differences between th
case and the uniformv case.

In summary, there are some strong qualitative similarit
between the uniform and nonuniform mean-field vortic
cases; the division into Gaussian plus high-velocity tail
usually applicable. One principal quantitative difference
that the fluctuation level becomes more intense for the h
energy cases in those regions where the vorticity is conc
trated. The mean velocity can also go up, and the mean
also becomes more intense. The overall fluctuation le
goes up dramatically with mean-field energy. Though we
not have a theory for how fast it should go up, we can
from Fig. 9 that it is considerably faster than linear. Figure
shows the mean-field energy, normalized to the unifo
mean-vorticity values, as a function of mean-field energy,
the three values of mean-field energy considered. Add
points to this graph is an expensive and time-consuming
tivity, but would seem to be a worthwhile undertaking. T
significantly noisier high-energy states for the system
something that will be characteristic of the ideal line vort
model but not for continuum models of a fluid.

VII. CLOSING REMARKS

We have investigated numerically the statistics of the E
lerian velocity field in two-dimensional flows generated by
large number of ideal, parallel, line vortices inside an a
symmetric rigid boundary. This is a dynamical system,
statistical mechanics of which have been interesting to inv
tigate in their own right, and which also seem to have imp
cations, not fully elucidated, for two-dimensional visco
continuum flows@14–16#. By considering the numerical ef
fects of ‘‘near neighbors’’ and their contributions to the v
locity fields at fixed spatial points, we have to a considera
degree, confirmed the hypothesis of Kuvshinov and Sc
@7# that the observed non-Gaussian, approximately th
power ‘‘tails’’ in the velocity field distribution, are due to
these near-neighbor events. These tails coexist with
‘‘bulk’’ Gaussian distribution at lower velocities.

FIG. 9. Average ofw2/w0
2 for every point sampled plotted as

function of E/E0, wherew0
2523.3 is the value atE0.
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The phenomenon of non-Gaussian high-velocity tails
measurement and computation of three-dimensional c
tinuum fluid turbulence has been observed before~e.g., Vin-
cent and Meneguzzi@18#; see also Jimenez@9#!. In compu-
tations, also simultaneously visible have been concentra
vortex configurations that have variously been cal
‘‘tubes,’’ ‘‘worms,’’ or ‘‘spaghetti,’’ since they are longer by
a considerable amount in one dimension than they are in
other two. Accounting for these configurations has been
important problem. It is difficult not to imagine that the on
might be responsible for the other. That is, we suggest
the non-Gaussian tails are a signature of physically pro
mate strong, tubular vortices, which are enough like ‘‘line
vortices that they account for the tails in three dimensions
the manner observed here in pure two-dimensional form

A second part of the investigation has been motivated
the recognition that pairwise interaction energies, summ
over all the pairs of an assembly of identical line vortice
provides a finite integral of the motion that can be set at a
value, and determines as much about the thermal equilib
that are possible, as energy usually does for conserva
statistical-mechanical systems. The nonuniform mean-fi
distribution which results, can impact the microscopic flu
tuation distribution for a fixed number of vortices by creati
more ~and therefore noisier! regions where ‘‘near neigh
bors’’ reside. Such an effect will undoubtedly enhance tra
port properties, such as the coefficient of self-diffusion@3,4#,
because of the larger random velocities that result.

It would be of interest to follow up these investigation
with dynamical computations, in which an assembly of li
vortices was moved around by its self-consistent veloc
field, with an eye toward measuring two-time statistical c
relations of Eulerian velocity fields, diffusion, and dec
rates. Measured coefficients of self-diffusion may be de
mined numerically, and may be found to depend fundam
tally on the mean-field energy and consequent tempera
that characterize a vortex equilibrium, not representable
any ‘‘universal’’ formula. Much earlier computations an
theories for ideal line vortex dynamics@9–11# showed unex-
pected late implications for Navier-Stokes fluid turbulence
two dimensions@14,15#. Standard ‘‘homogeneous turbu
lence’’ theories were shown to be very poor predictors
the late-time states of turbulent fluids in two dimension
once this step was taken. We may speculate that the pre
considerations, which extend Holtsmark statistics beyond
spatially uniform case, might substantially revise, for e
ample, the magnitudes of transport coefficients that are o
assigned to such diverse systems as galaxies or globular
ters @6# and dilute magnetized plasmas@3,4#.
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